Strategic Decompositions of Normal Form Games: Zero-sum Games and Potential Games

نویسندگان

  • Sung-Ha Hwang
  • Luc Rey-Bellet
چکیده

We study new classes of games, called zero-sum equivalent games and zero-sum equivalent potential games, and prove decomposition theorems involving these classes of games. We say that two games are “strategically equivalent” if, for every player, the payoff differences between two strategies (holding other players’ strategies fixed) are identical. A zero-sum equivalent game is a game that is strategically equivalent to a zero-sum game; a zero-sum equivalent potential game is a zero-sum equivalent game that is strategically equivalent to a common interest game. We also call a game “normalized” if the sum of one player’s payoffs, given the other players’ strategies, is always zero. We show that any normal form game can be uniquely decomposed into either (i) a zero-sum equivalent game and a normalized common interest game, or (ii) a zero-sum equivalent potential game, a normalized zero-sum game, and a normalized common interest game, each with distinctive equilibrium properties. For example, we show that two-player zero-sum equivalent games with finite strategy sets generically have a unique Nash equilibrium and that two-player zero-sum equivalent potential games with finite strategy sets generically have a strictly dominant Nash equilibrium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS

In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...

متن کامل

Decompositions of two player games: potential, zero-sum, and stable games

We introduce several methods of decomposition for two player normal form games. Viewing the set of all games as a vector space, we exhibit explicit orthonormal bases for the subspaces of potential games, zero-sum games, and their orthogonal complements which we call anti-potential games and anti-zero-sum games, respectively. Perhaps surprisingly, every anti-potential game comes either from the ...

متن کامل

Decompositions and potentials for normal form games

We introduce a method of decomposing a p-player normal form game into 2p simultaneously-played component games, each distinguished by the set of “active” players whose choices influence payoffs. We then prove that a normal form game is a potential game if and only if in each of the component games, all active players have identical payoff functions, and that in this case, the sum of these share...

متن کامل

Dynamic system of strategic games

Maybe an event can't be modeled completely through one game but there is more chance with several games. With emphasis on players' rationality, we present new properties of strategic games, which result in production of other games. Here, a new attitude to modeling will be presented in game theory as dynamic system of strategic games and its some applications such as analysis of the clash betwe...

متن کامل

A review on symmetric games: theory, comparison and applications

Game theory models decision makers' behaviors in strategic situations. Since the structures of games are different, behavior and preferences of the players are different in various types of game. This paper reviews various situations of games. Here, characteristics of some common games are discussed and compared. Specifically, we focus on a group of games called symmetric games including Prison...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.06648  شماره 

صفحات  -

تاریخ انتشار 2016